FetchingData yfinance Fetch historical prices and fundamentals from Yahoo Finance pip install yfinance yf.download(""AAPL"", start=""2022-01-01"", end=""2022-12-31"") ts.get_daily(symbol='AAPL', outputsize='full') web.DataReader(""AAPL"", ""yahoo"", start, end) Fetch historical prices, fundamentals, and technical indicators pip install alpha_vantage Fetch historical and alternative financial data (FRED, World Bank, etc.) pip install pandas-datareader Connect to Interactive Brokers for data fetching and live trading Perform mathematical operations on multi-dimensional arrays Manipulate tabular and time-series data Use technical indicators (RSI, Bollinger Bands, MACD, etc.) Plot graphs, charts, and histograms Create interactive visualizations Apply ML algorithms like classification, clustering, and regression model =sklearn.linear_model.LinearRegression() Backtest and visualize trading strategies Build and deploy machine learning models (e.g., neural networks) tf.keras.Sequential([...]) High-performance backtesting and optimization using NumPy and Pandas Build deep learning models (simplified interface for TensorFlow) keras.Sequential([...]) Manual setup from pip install numpy np.mean(np.array([1, 2, 3])) pd.DataFrame({'A': [1, 2, 3]}) pd.DataFrame({'A': [1, 2, 3]}) plt.plot([1, 2, 3], [4, 5, 6]) px.line(data_frame, x='x_col', y='y_col') cerebro.addstrategy(MyStrategy) portfolio = vbt.Portfolio.from_signals(close, entries, exits) pip install pandas pip install pandas pip install matplotlib pip install plotly pip install scikit-learn pip install backtrader pip install tensorflow pip install vectorbt pip install keras Pandas-DataReader Pandas AlphaVantage IBridgePy TA-Lib Backtrader NumPy Matplotlib Vectorbt TensorFlow Plotly Scikit-learn Keras Category Library Purpose Example Usage Installation DataManipulation TechnicalAnalysis Plotting & Visualization Backtesting MachineLearning